Coupled Power and Thermal Simulation with Active Cooling

نویسندگان

  • Weiping Liao
  • Lei He
چکیده

Power is rapidly becoming the primary design constraint for systems ranging from server computers to handhelds. In this paper we study microarchitecture-level coupled power and thermal simulation considering dynamic and leakage power models with temperature and voltage scaling. We develop an accurate temperature-dependent leakage power model and efficient temperature calculation, and show that leakage energy can be different by up to 10X for temperatures between 35C and 110C. Given the growing significance of leakage power and its sensitive dependence on temperature, no power simulation without considering dynamic temperature calculation is accurate. Furthermore, we discuss the thermal runaway induced by the interdependence between leakage power and temperature, and show that in the near future thermal runaway could be a severe problem. We also study the microarchitecture level coupled power and thermal management by novel active cooling techniques that reduce packaging thermal resistance. We show that the active cooling technique that reduces thermal resistance from 0.8C/W to 0.05C/W can increase system maximum clock by up to 2.44X under the same thermal constraints.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Coupled Power and Thermal Simulation and Its Application

Power is rapidly becoming the primary design constrain for systems ranging from server computers to handhelds. In this paper we study microarchitecture-level power modeling and management with temperature and voltage scaling. We develop an accurate temperature-dependent leakage power model and efficient temperature calculation, and show that leakage energy and total energy can be different by u...

متن کامل

Numerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant

Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...

متن کامل

A Comprehensive Approach to an Optimum Design and Simulation Model of a Mechanical Draft Wet Cooling Tower

The present paper describes the designing of a thermally and economically optimum mechanical draft counter-flow wet cooling tower. The design model allows the use of a variety of packing materials in the cooling tower toward optimizing heat transfer. Once the optimum packing type is chosen, a compact cooling tower with low fan power consumption is modelled within the known design variables....

متن کامل

Numerical and Analytical Study of Natural Dry Cooling Tower in a Steam Power Plant

Design of a natural dry cooling tower has been accomplished in two sections: the design of heat exchangers and the numerical solution of flow through the tower. Heat exchanger (Heller type) has been simulated thermodynamically and then coupled with a computer program, which calculated the turbulent natural convection flow through the tower. The computer program developed for this purpose can be...

متن کامل

Thermal Simulation of Solidification Process in Continuous Casting

In this study, a mathematical model is introduced to simulate the coupled heat transfer equation and Stefan condition occurring in moving boundary problems such as the solidification process in the continuous casting machines. In the continuous casting process, there exists a two-phase Stefan problem with moving boundary. The control-volume finite difference approach together with the boundary ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003